Step of Proof: bnot-ff
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
bnot-ff
:
a
:
. ((
a
) ~ ff)
(
a
~ tt)
latex
by ((((D (0)
)
CollapseTHENA (Auto
))
)
C
CollapseTHEN (AutoBoolCase
a
))
latex
CC
.
Definitions
left
+
right
,
Unit
,
,
tt
,
p
q
,
p
q
,
p
q
,
a
<
b
,
x
f
y
,
f
(
a
)
,
a
<
b
,
null(
as
)
,
x
=a
y
,
(
i
=
j
)
,
i
z
j
,
i
<z
j
,
p
=b
q
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
b
,
,
Type
,
ff
,
x
:
A
.
B
(
x
)
,
b
,
P
Q
,
x
:
A
B
(
x
)
,
A
,
,
s
=
t
,
t
T
,
s
~
t
Lemmas
eqtt
to
assert
,
iff
transitivity
,
eqff
to
assert
,
assert
of
bnot
,
bnot
wf
,
not
wf
,
assert
wf
,
bool
wf
origin